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Many researchers have intensively investigated the methods of using vibration properties
of a structure to identify its damage in the past two decades. It has been realized that the
modal data included in damage identi"cation analysis have a great in#uence on the accuracy
of identi"cation results. In this paper, a technique is presented to select a subset of
measurement points and corresponding mode to be used in model updating for damage
identi"cation. A new concept of damage measurability is introduced in terms of two factors,
namely the sensitivity of a residual vector to the structural damage, and the sensitivity of the
damage to the measurement noise. Based on the two factors, the structural damage
measurability is estimated quantitatively. It yields more accurate and reliable damage
identi"cation results if the mode and measurement points corresponding to the largest
damage measurability value are chosen in "eld test and numerical analysis. The advantage
of the technique is that it is based on the undamaged state of structures and thus
independent of the damage con"guration. Therefore, it is applicable in practice to determine
the measurement selection prior to "eld testing and damage identi"cation analysis. A frame
structure is used to demonstrate the validity and versatility of the method. It demonstrates
a signi"cant improvement on the accuracy and reliability of damage identi"cation results
when the measurement points and mode are determined according to the present technique.

( 2000 Academic Press
1. INTRODUCTION

Many structures worldwide which were constructed tens or even hundreds of years ago are
still in service. Their failure could be catastrophic not only in terms of the loss in economy
and life, but also in terms of the subsequent social and psychological impacts that might be
caused. A lot of structures are, in fact, de"cient owing to many factors such as they might
not be properly designed or constructed according to modern standards, or they have been
deteriorated after so many years. For example, the 1998 Report Card for America's
Infrastructure pointed out that nearly 1/3}1/2 America's infrastructure (bridges, railways,
school buildings, etc.) is rated structurally de"cient and need to be repaired [1]. Therefore,
structural condition assessment is a critical problem worldwide.

Vibration-based methods, in which the measured dynamic properties such as natural
frequencies and mode shapes, are applied to detect structural damage throughout the civil,
022-460X/00/360089#16 $35.00/0 ( 2000 Academic Press
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mechanical and aerospace engineering communities during the past few decades. Doebling
et al. [2, 3] presented an intensive review of the available methods in this area. Among many
techniques, "nite element (FE) model updating is an attractive method, because both
damage location and damage severity can be obtained by comparing the updated model
with the intact model.

However, the method is far from maturing. The main di$culties lie on the two "elds:
uncertainties in FE modelling and errors related to modal testing [4]. Uncertainties in the
FE model exist due to inaccurate physical parameters, non-ideal boundary conditions and
structural non-linear properties. With respect to modal testing, measurement noise is
inevitable and the maximum number of measurement locations is limited. Moreover, it is
not possible till now to measure some degrees of freedom such as rotational and internal
ones. Therefore, the number of equations in model updating is usually smaller than that of
unknown parameters of the model, hence, it is an underdetermined problem and a small
error may cause a large deviation in the results [5]. It has been realized that the locations of
measurement and the modes that included in the analysis have a great in#uence on the
accuracy of damage identi"cation results [6, 7]. Therefore, to identify damage successfully,
proper measurement selection including the measurement points and modes need to be
chosen carefully before "eld testing and damage identi"cation analysis.

Some methods have been developed to determine the optimal measurement set for modal
test based on active vibration control theories. Lim [8] developed a method to select
optimal actuator and sensor locations based on the degree of e!ectiveness/versatility of
pairs of actuators and sensors. Kammer [9] presented a sensor placement method for
modal identi"cation and correlation according to the contribution of each candidate sensor
location to the linear independence of the corresponding target modes. This algorithm was
used by Klenke et al. [10] in developing a software environment to support optimal modal
test design. Breitfeld [11] found out that the optimal set of measurement points must
preserve the orthogonality of the eigenvectors to avoid spatial aliasing.

However, measurement selection for damage identi"cation is not su$ciently studied.
Sanayei and Saletnik [6] developed a Best-In-Worst-Out method to choose a subset of
static force and strain measurements that have the least sensitivity to measurement noise.
The available measurement which has the smallest e!ect on the parameter estimation is
removed one by one until the output error becomes too large. Doebling et al. [12] studied
the mode selection strategy in locating damage and concluded that a mode selection based
on maximum modal strain energy produced more accurate results than that based on
minimum frequency. Three mode selection techniques were examined, which are modes
corresponding to the lowest modal frequency; modes that store the highest strain energy in
the undamaged structure; and modes that store the highest strain energy in the damaged
structure. With experimental data on an eight bay truss structure, the identi"cation results
showed that the last technique was the most e!ective. However, the modes in damaged
structure cannot be derived in practice because the damage con"guration is not available
beforehand. Moreover, very high modes such as modes 105 and 106, as suggested by the
results of the example, will be di$cult to be measured accurately in practice.

A new technique is presented in this paper to determine the measurement set, i.e., the
measurement points and the corresponding modes, for damage identi"cation. A new
concept of damage measurability is introduced in terms of two sensitivity factors, namely
the sensitivity of a residual vector to the structural damage, and the sensitivity of the
damage to the measurement noise. The points and mode that result in the largest damage
measurability are chosen as the measurement set. This selection technique is derived from
the undamaged structure and thus is independent of the damage con"guration. Therefore, it
can be applied to "eld modal testing and damage detection analysis in practice. To
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demonstrate the validity of the proposed method, a few example structures with di!erent
damaged members are analyzed. Without loss of generality, however, only a frame example
is preserved in detail in the present paper. In numerical analysis, all the modal data are
assumed containing a normally distributed variation to simulate the e!ect of measurement
noise. Monte Carlo simulation technique is used to estimate the statistics of damage
identi"cation results. Numerical results obtained show a signi"cant improvement on the
accuracy of damage identi"cation results when the measurement set determined by the
present technique is adopted as compared with those obtained using other measurement
sets.

2. DAMAGE MEASURABILITY

Structural damage always exists owing to many factors such as corrosion, joints loose,
bumping, fatigue or improper construction. In FE model, damage can be represented by
changes in some parameters such as Young's modulus, cross-sectional area, moment of
inertia, and/or boundary conditions, etc. Most model updating methods modify the
parameters of the model continually so that the expected responses match the measured
ones in an optimal way [2]. That is, changing the parameters p so that the following penalty
function minimizes:

J"ER
m
!R(p)E, (1)

where R(p) is a non-linear function of the parameters p of the structure related to the
structural vibration characteristics and R

m
is the corresponding function obtained from

measurements. Minimizing equation (1) with respect to the parameters p, it has

S )Dp"e, (2)

where e is the residual vector, Dp is the incremental vector with respect to the parameters
p and S is the sensitivity matrix, which is the partial derivative of e with respect to p. In
general, the number of equations will not be equal to that of unknowns (Dp) in equation (2).
Thus usually, least-squares technique is used to solve Dp. Theoretically speaking, Dp is
directly related with damage. A larger value in the vector Dp corresponds to the element
with a more signi"cant damage. Thus, once Dp is determined, the damage location and level
can be obtained.

The sensitivity matrix S represents the sensitivity of the residual vector to the changes in
each parameter (i.e., damage in structures). Since a large term in S will cause a larger
residual e with respect to a unit change in the parameters p (damage), damage will be more
easily and accurately detected, thus it should be included in damage identi"cation analysis.
Speci"cally, in the present study, this is de"ned as damage sensitivity and it has

S
d
"

Le

Lp
. (3)

It can be obtained by estimating the change in residual vector when there is a unit change in
an elemental parameter p. S

d
is estimated using the undamaged structural parameters

because the damaged structural parameters are unknown before analysis.
The residual e and matrix S in equation (2) are also related to some uncertainties that

inevitably exist in the measured data and FE model. In the present study, the e!ect of FE
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model uncertainty is not considered. The e!ect of measurement noise on damage
identi"cation is, however, included. It is de"ned as noise sensitivity and expressed as

S
n
"

LDp

LX
, (4)

where X is a noise vector. The physical meaning of S
n

is the change in Dp due to a unit
change in measurement noise and can be derived as follows. By taking partial derivative on
both sides of equation (2) with respect to the measurement noise X, it has

S0 )
LDp

LX
#

LS

LX
)Dp0"

Le

LX
, (5)

where S0 and Dp0 are the initial values without noise. From the equation, it can be seen that
the noise sensitivity, LDp/LX, is dependent on both the damage state (Dp0) and noise.
Because the damage is usually unknown in practice before identi"cation analysis, the noise
sensitivity can only be approximately calculated in the undamaged state in which Dp0"0.
Therefore, LDp/LX can be approximated as

LDp

LX
"[Su]` )

Le

LX
, (6)

where Su is the sensitivity matrix in undamaged state (deterministic without noise), and
superscript &&#'' represents the pseudo-inverse of the matrix which can be solved by
singular value decomposition (SVD).

From the above de"nition, a large value of damage sensitivity represents that the
corresponding measurement points and modes are more sensitive to structural damage;
while a small value of noise sensitivity indicates that the corresponding measurement points
and modes are insensitive to measurement noise. In theory, points and modes
corresponding to the largest damage sensitivity and smallest nose sensitivity should be used
in damage identi"cation analysis. A large damage sensitivity assures the true damages being
identi"able, and a small noise sensitivity makes the results more reliable. Both are very
important and should be implemented together.

Therefore, in order to have more accurate and reliable damage identi"cation results, one
should select the measurement locations and structural modes that give the largest S

d
and

smallest S
n
. The damage measurability for a structure is thus de"ned as the ratio of S

d
to S

n

M
d
"

S
d

S
n

. (7)

3. DAMAGE MEASURABILITY IN MODEL UPDATING METHOD WITH
INCOMPLETE MODAL DATA

To apply the measurement selection method de"ned above to damage identi"cation,
a FE model updating method with incomplete modal data is used in this study [13]. The
residual vector e is the modal force error function with the form

e"!M(K
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a
N
i
, (8)

where K, M are, respectively, the sti!ness matrix and mass matrix of the undamaged
structure, j , U are, respectively, the ith measured eigenvalue and mode shape of the
i i
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damaged structure. The subscripts &&a'' and &&b'' denote the measured degree of freedom
(d.o.f.) and unmeasured d.o.f. respectively. Each term of e is the modal force error
corresponding to the d.o.f. Generally, only mode shapes corresponding to the lateral d.o.f. of
each point can be measured, therefore, the vector e has the dimension of np]1 for one
mode, where np is the number of measured d.o.f.s or measurement points.

First, the damage measurability of one mode is calculated. From equation (3), the damage
sensitivity matrix is

[S
d
]
ij
"

LMeN
i

LMpN
j

, (9)

where i"1, 2,2 , np, j"1, 2,2, ne in which ne is the number of structural parameters to
be identi"ed, here it is the number of elements in the FE model. The ijth term of matrix S

d
is

the residual corresponding to the ith measured d.o.f. of the mode under consideration when
there is a unit change in the jth parameter. Since damage may exist in any element, the
absolute value of all the terms in the ith row are averaged to get the averaged sensitivity of
the residual in the ith d.o.f. to the change of every parameter, that is
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j
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j
K . (10)

This is the damage sensitivity value of the ith d.o.f. (or ith measurement point).
Furthermore, the damage sensitivity of the mode under consideration is the summation of
the damage sensitivity values of each point, that is

S
d
"+

i

MS
d
N
i
. (11)

To calculate the noise sensitivity of one mode, the source of noise must be de"ned "rst. As
discussed above, the present study assumes that noise only exists in the measured modal
data. Typical random measurement noise distribution has uniform or normal probability
density function (PDF). A uniform PDF represents a banded type of noise with equal
probability, while a normal PDF (also named as Gaussian distribution) is not banded but
has a higher probability of occurrence closer to the mean value. To simulate the e!ect of
measurement noise, the measured modal data are assumed to be the true values (without
noise) plus normally distributed random noises with zero mean values and di!erent levels of
variances. That is,
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where j
i

is the ith eigenvalue, /
ji

is the jth component of the ith mode shape,
i"1, 2,2 , nm, j"1, 2,2 , np, in which nm is the number of modes, subscript &&E''
represents the experimental data, X

0i
, X

ij
are, respectively, the ratios of random noises in

eigenvalues and mode shapes to their respective true values j
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where p
0i

and p
ji

are the standard deviations, which give the level the random noise and are
assumed independent of each other.

From equation (4), the noise sensitivity matrix of one mode is

[S
n
]
ij
"

LMDp/pN
j

LX
i

. (14)

Here the parameter change ratio (damage ratio) Dp/p is used instead of Dp. It indicates no
damage in the particular element if its damage ratio is equal to zero; and total loss of the
elemental sti!ness if its damage ratio equals !1. The matrix S

n
also has dimensions np]ne.

The ijth term of the matrix S
n
is the change in the jth elemental damage ratio when there is

a unit change (noise) in the measured data at the ith d.o.f. If the noise in the eigenvalue of the
mode is also considered, the noise sensitivity matrix has the dimension of (np#1)]ne. In
that case the jth component of row (np#1) is the change in the jth elemental damage ratio
when there is a unit change (noise) in the measured eigenvalue of the mode. Similar to
equation (10), the absolute values of all the terms in the ith row are averaged to obtain the
noise sensitivity value of ith d.o.f., which means the averaged in#uence of noise in the
measured data at the ith d.o.f. on the elemental damage ratio, it has
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Furthermore, the noise sensitivity of the mode under consideration is the summation of the
noise sensitivity value of each d.o.f. (point). It has

S
n
"+

i
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n
N
i
. (16)

According to the properties of damage sensitivity and noise sensitivity, the damage
measurability of one point is de"ned as the ratio of the damage sensitivity to the noise
sensitivity of that point,
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(17)

and the damage measurability of a mode is similarly de"ned as the ratio of the damage
sensitivity to the noise sensitivity of that mode
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. (18)

The above procedure can be repeated for each mode of interest, thus the damage
measurability of each point in the "rst few modes can be derived before "eld measurement
and damage identi"cation analysis. The mode with the largest damage measurability is
chosen and the points with larger damage measurability corresponding to the chosen mode
are selected as measurement d.o.f.s.

4. NUMERICAL EXAMPLE

The above procedures have been used to analyze several examples. Without loss of
generality, however, only one frame example is presented in detail in this section to



VIBRATION-BASED STRUCTURAL DAMAGE 95
demonstrate the validity of the method. First, the damage measurability of the structure is
calculated, from this the measurement selection is derived; then, the assumed damages are
introduced and identi"ed by model updating method. To study the e!ect of measurement
noise, each eigenvalue and mode shape are assumed having some random variations as
described above. Monte Carlo simulation is employed to estimate the statistics of
identi"cation results obtained with or without using the optimal measurement sets.

Consider a two-level, one span concrete frame structure as shown in Figure 1. Table
1 gives its mechanical parameters. The frame is discretized into 32 beam-column elements
with 32 nodes. Each element has 6 d.o.f.s, besides the mass of the frame, non-structural mass
of 3000 kg/m is also added to the beams in "nite element modelling.

Damage is de"ned as the reduction of elemental #exural sti!ness. The parameter
p represents the elemental #exural sti!ness (EI) and damage ratio Dp/p thus represents
elemental sti!ness change ratio. Since only transverse response can be measured in practice,
dynamic characteristics corresponding to the lateral d.o.f.s at 30 nodes are assumed to be
measured. Therefore, np, ne are 30 and 32 respectively.

The damage sensitivity is estimated for each point according to equation (10) and
summed up for one mode as equation (11). The results for the "rst 7 modes are listed in
TABLE 1

Nominal properties of structure

Young's Moment Axial Linear Flexural
Area Density modulus of inertia sti!ness density sti!ness

A (m2) o (kg/m3) E (N/m2) I (m4) EA (N) mN (kg/m) EI (N m2)

Column 0)4]0)4 2)50]103 2)50]1010 2)1]10~3 4)00]109 4)00]103 5)33]107
Beam 0)25]0)5 2)50]103 2)50]1010 2)6]10~3 3)13]109 3)31]103 6)51]107

Figure 1. Finite element model of frame.
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Table 2. Similarly, the noise sensitivity is estimated for each point according to equation (15)
and summed up for one mode as equation (16). The results for the "rst 7 modes are listed in
Table 3. It should be noted that the symmetric points have the same values. The noise
sensitivity of points 13 and 20 for some modes are zero because they are the stationary
nodes of those modes. Thus, the corresponding mode shape values are zero.
TABLE 3

Noise sensitivity matrix (S
n
)

Points Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

2, 25 0)2475 0)5856 0)3352 0)3382 0)3597 0)3764 0)0799
3, 26 2)2319 3)7727 0)7436 0)7661 0)8911 0)8003 0)2500
4, 27 8)6009 11)6446 0)8119 1)4074 1)4106 0)8916 0)7504
5, 28 131)1439 228)6121 0)5693 0)1038 3)6295 0)5455 13)4540
6, 29 21)1453 33)4981 1)1026 1)2830 1)3066 0)6233 5)9619
7, 30 20)5836 6)2853 0)9836 0)5914 1)0996 1)6793 0)6333
8, 31 38)8181 4)2970 0)4475 0)1480 0)5034 1)4497 0)6456
9, 32 372)1350 160)4135 0)0664 0)2254 0)0670 1)8105 0)2335
10, 16 9)0648 2)8390 3)9716 4)4687 3)6881 1)7127 1)1781
11, 15 1)7802 1)0248 4)1383 4)9259 0)1027 1)8092 3)3617
12, 14 1)8363 1)2417 3)0985 3)2839 0)3703 1)2587 0)3974
17, 23 2)6042 5)7020 4)5822 2)2586 1)8010 1)0446 2)5216
18, 22 1)3065 1)7413 4)6805 4)9889 2)0149 0)1367 0)4949
19, 21 1)4374 1)5552 3)3876 3)0543 1)2321 0)3662 0)4101

13 0 0 2)8062 3)6172 0 0 0)9231
20 0 0 2)9437 3)2997 0 0 0)9188

R 1225)871 926)4258 63)5875 62)6041 36)9532 29)0094 62)5867

Eigenvalue 0)0499 0)1953 0)2273 0)2610 0)5269 0)3694 2)0092

TABLE 2

Damage sensitivity matrix (S
d
) (]106)

Points Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

2, 25 0)0817 0)2478 0)1093 0)2249 0)1486 0)4609 0)0301
3, 26 0)0669 0)2172 0)1253 0)2829 0)1857 0)5097 0)0901
4, 27 0)0915 0)2574 0)1665 0)4740 0)3507 0)7038 0)3023
5, 28 0)0736 0)4508 0)2558 0)5354 0)3853 0)8522 0)3385
6, 29 0)0780 0)2533 0)2904 0)4513 0)4835 0)7716 0)4463
7, 30 0)0614 0)2511 0)3707 0)3302 0)5569 0)5561 0)5499
8, 31 0)0710 0)2455 0)4507 0)2764 0)6133 0)4464 0)8577
9, 32 0)0440 0)1454 0)2251 0)1592 0)2704 0)2989 0)5448
10, 16 0)1623 0)3401 0)3552 0)8763 0)8019 1)8362 1)4513
11, 15 0)1653 0)0971 0)3691 1)0887 0)4712 2)7351 1)5225
12, 14 0)1107 0)0400 0)4246 1)3372 0)2222 2)8363 1)4451
17, 23 0)1110 0)3902 0)5943 0)4585 1)5646 0)7576 1)8340
18, 22 0)1116 0)4272 0)9081 0)4313 2)7464 0)5799 3)7122
19, 21 0)0693 0)2779 1)1822 0)4271 2)7012 0)2900 3)7222

13 0)0885 0)0264 0)4603 1)5017 0)1560 2)4959 1)4586
20 0)0540 0)2194 1)3106 0)4629 2)3491 0)2079 3)7260

R 2)7391 7)5278 13)4255 16)6714 25)5089 29)9732 38)8786



TABLE 4

Damage measurability of the ,rst seven modes (M
d
)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

S
d
(]106) 2)7391 7)5278 13)4255 16)6714 25)5089 29)9732 38)8786
S
n

1225)871 926)4258 63)5875 62)6041 36)9532 29)0094 62)5867
M

d
(]106) 0)0022 0)0081 0)2111 0)2663 0)6903 1)0332 0)6212
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From the results obtained, it can be noted that the damage sensitivity value for each
mode increases with the mode number. This is because, as commonly understood, higher
modes will be more sensitive to damage, especially the localized damage. On the other hand,
the noise sensitivity values of the "rst mode and the second mode are very large, therefore it
will render signi"cant error if they are included in damage identi"cation analysis. The noise
sensitivity value generally decreases with the increase of the mode number, but the decrease
is not monotonic. As given in Table 3, the noise sensitivity of mode 7 is larger than that of
modes 5 and 6. A detailed mode shape analysis indicates that there is a large axial
deformation associated with mode 7. This is probably the reason that the noise sensitivity of
mode 7 is larger. In fact, noise sensitivity values of higher modes, which are not given here,
are also calculated. It is found that the noise sensitivity value of mode 9 is the smallest in the
"rst 9 modes. Although it is possible but very di$cult and expensive to measure the high
modes accurately in practice, the lower modes that give relatively small noise sensitivity
should be chosen in practice. Without loss of generality, in the present example, only the
"rst 7 modes are considered.

From equation (18), the damage measurability of each mode is estimated and listed in
Table 4.

It can be seen clearly in Table 4 that mode 6 is the most suitable one among the "rst
7 modes for damage identi"cation analysis. Moreover, the sixth mode also corresponds to
a smaller noise sensitivity to eigenvalue than the "fth and the seventh mode (see Table 3).
Therefore, mode 6 is chosen in the analysis.

To search for the proper points, the damage measurability of the lateral d.o.f. of each
point is estimated according to equation (17). The results are given in Table 5. Points 13 and
20 are excluded because they are the stationary nodes of mode 6. From Table 5, the 12
points which have relatively larger damage measurability values are selected as
measurement points, they are: Nos. 2, 5, 6, 11, 12, 18 and the symmetric ones (Nos. 25, 28, 29,
15, 14, 22).

It should be noted that the above procedure is performed based on the "nite element
model of the intact structure. It does not pre-assume the locations and damage levels in the
structure. This implies the versatility of the method that it can be applied to any structure
with any damage state before damage identi"cation analysis. The chosen mode and
measurement points vary from structure to structure depending on structural parameters,
con"gurations and the number of modes considered. Moreover, how many points are
included in the measurement and analysis depend on the availability of measurement
equipment, and experience of the analyst. More points do not mean better results because
more measurement errors are introduced.

To illustrate the advantage of the measurement selection based on the presented
algorithm in structural damage identi"cation, two damaged states and three sets of
measurement selections are considered. The detail information is listed in Table 6. In the
"rst damage state, elements 1}4 (the left column in the "rst storey) are assumed deteriorated



TABLE 5

Damage measurability of measurement points in mode 6 (M
d
)

Points S
d
(]106) S

n
M

d
(]106)

(1) (2) (3) (4)"(2)/(3)

2, 25 0)4609 0)3764 1'2245
3, 26 0)5097 0)8003 0)6369
4, 27 0)7038 0)8916 0)7894
5, 28 0)8522 0)5455 1'5622
6, 29 0)7716 0)6233 1'2379
7, 30 0)5561 1)6793 0)3311
8, 31 0)4464 1)4497 0)3079
9, 32 0)2989 1)8105 0)1651
10, 16 1)8362 1)7127 1)0721
11, 15 2)7351 1)8092 1'5118
12, 14 2)8363 1)2587 2'2534
17, 23 0)7576 1)0446 0)7253
18, 22 0)5799 0)1367 4'2421
19, 21 0)2900 0)3662 0)7919

TABLE 6

Detail of damage cases and measurement selections

Case
Damage

state

Damaged
elements

(damage ratios)
Measurement

selection Mode/measurement points

1 1
Mode 6/2, 5, 6, 11, 12, 14, 15,

18, 22, 25, 28, 29

2 1
1, 2, 3, 4

2
Mode 6/3, 5, 7, 9, 11 13, 15,

(!15)5%) 18, 20, 22, 26, 28, 30, 32

3 3 Mode 5/2, 5, 6, 11, 12, 14, 15,

18, 22, 25, 28, 29

4 1
Mode 6/2, 5, 6, 11, 12, 14, 15,

18, 22, 25, 28, 29
1, 11, 21, 30

5 2
(!15)5%)

2
Mode 6/3, 5, 7, 9, 11, 13, 15,

18, 20, 22, 26, 28, 30, 32

6 3
Mode 5/2, 5, 6, 11, 12, 14, 15,

18, 22, 25, 28, 29
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with a #exural sti!ness reduction by 15)5%. In the second state, damage is assumed existing
in arbitrarily selected elements. In particular, elements 1, 11, 21 and 30 have #exural sti!ness
reduction by 15)5%. The "rst measurement selection is the above chosen measurement set;
the second selection is the measurement at alternative points of mode 6; and the last one is
the same measurement points as the "rst selection but mode 5 is used in the analysis.
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In di!erent cases, only the lateral d.o.f.s of the selected points are measured and the
damage is identi"ed by the model updating method. To consider the in#uence of
measurement noise, the simulated modal data are set to be the true values smeared with
random noises, which are assumed having normal distributions, as given in equations (12)
and (13). Monte Carlo simulation is used to estimate the statistics of damage ratios of the
structure. The procedure is summarized in the following:

1. add Gaussian random noise with zero mean and prescribed standard deviation to the
true modal data;

2. identify the damages with model updating method and calculate the damage ratios of
all elements;

3. repeat steps 1 and 2, then compute the means and standard deviations of damage
ratios for all elements;

4. stop simulations until the means and standard deviations converge;
5. repeat steps 1}4 for each case and compare their results.

The noise is assumed having a standard deviation of 0)5% for eigenvalue and 1)0% for
every mode shape amplitude. That is p

0i
"0)5% and p

ji
"1)0%, j"1, 2,2 , np.

According to the above procedures, the results of Cases 1}3 are derived and illustrated in
Figures 2}5.

Figure 2 compares the mean values of damage ratios obtained from Cases 1 and 2 with
the true damage ratios (!15)5%). It can be seen that in Cases 1 and 2, the damage ratios of
damaged elements are approximately equal to the true values except that of element 2. But
Case 1 has smaller errors in the undamaged elements (Nos. 5}32), where the true
damage values are zero. Damage in element 2 is not detected because the element stores
small modal strain energy associated with mode 6, thus the damage in this element
produces negligible changes in the dynamic characteristics of the mode so that the damage
cannot be identi"ed. Similar observations that this certain mode is insensitive to damage in
particular elements were also made by other researchers [14]. To overcome this problem,
multiple modes should be included in the analysis. This, however, is not a topic of the
present paper.

Figure 3 compares the standard deviations of damage ratios obtained in Cases 1 and 2. It
shows that the standard deviations of nearly all elemental damage ratios of Case 1 are much
smaller than those of Case 2, which means the damages can be identi"ed more reliably in
Figure 2. Mean values of Case 1 versus Case 2: h, Case 1; j, Case 2; Z, True value.



Figure 3. Standard deviations of Case 1 versus Case 2: h, Case 1; j, Case 2.

Figure 4. Mean values of Case 1 versus Case 3: h, Case 1; j, Case 3; Z, True value.

Figure 5. Standard deviations of Case 1 versus Case 3: h, Case 1; j, Case 3.
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Case 1 than in Case 2. These observations indicate that using the proper measurement
points determined by the damage measurability analysis introduced in this paper can
improve the accuracy and reliability of damage identi"cation results.

Similarly, Figures 4 and 5 compare the mean values and standard deviations of Case
1 with those of Case 3 respectively. It shows that damage in element 2 cannot be identi"ed in
Case 3 either, implying mode 5 is not sensitive to the damage in element 2 either. Case 3 also
results in larger errors in damage ratios of the damaged elements 3, 4, and results in false
damage locations in undamaged elements 7, 8. Moreover, Case 3 generally has larger
standard deviations of damage ratios as compared with those of Case 1. These observations
indicate that using proper mode determined by damage measurability analysis can improve
the accuracy and reliability of identi"cation results.

To check the general applicability of the proper selection to di!erent damage
con"gurations, a more general damage state (damage state 2) is examined in which the
damaged elements are selected arbitrarily rather than concentrated in one column. Figures
6}9 show the results.

As shown, both Cases 4 and 5 can detect damage in elements 1, 11 and 30, but fail to
detect damage in element 21. Case 5 gives false damage detection in a few elements such as 3,
4, 5 and 31. Moreover, Case 5 also results in larger standard deviations in almost all
elements than Case 4 does, implying the identi"cation results of Case 4 are more reliable.
Both cases fail to detect damage in element 21 is because of the same reason as discussed
above for element 2. Nevertheless, identi"cation results shown in Figures 6 and
7 demonstrated again that using the measurement set proposed in this study can give more
accurate and more reliable damage detection results.

If mode 5 is used instead of mode 6, as shown clearly in Figures 8 and 9, the damages in
elements 11, 21 and 30 are not detected. This demonstrates again the advantages of using
the proper measurement selection in the analysis, although the averaged standard
deviations in Case 6 are comparable to those in Case 4.

The average errors of the mean values and the average standard deviations of the six
cases analyzed above are estimated by

Average error of mean values eN k"
+ne

i/1
D k (aS

i
)!aT

i
D

ne
, (19)

Average standard deviations eN p"
+ne

i/1
p (aS

i
)

ne
, (20)
Figure 6. Mean values of Case 4 versus Case 5: h, Case 4; j, Case 5; Z, True value.



Figure 7. Standard deviations of Case 4 versus Case 5: h, Case 4; j, Case 5.

Figure 8. Mean values of Case 4 versus Case 6: h, Case 4; j, Case 6; Z, True value.

Figure 9. Standard deviations of Case 4 versus Case 6: h, Case 4; j, Case 6.
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TABLE 7

Average errors of mean values (eN k) and avearge standard deviations (eN p)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

eN k 0)0158 0)0244 0)0242 0)0234 0)0333 0)0285
eN p 0)0135 0)0310 0)0186 0)0165 0)0302 0)0168
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where k, p are, respectively, the mean value and standard deviation, aS
i

is the simulated
results of damage ratio of element i and aT

i
is the true damage ratio of element i. Table 7 lists

the results. As can be noted, identi"cation results obtained by using the proper selection
(Cases 1 and 4) give more accurate (smaller average error) and more reliable (smaller
average standard deviation) damage detection.

Therefore, with the proper measurement points and mode derived by this technique, most
damaged elements can be identi"ed more accurately and reliably, although a few damaged
elements might not be detected. Results might be improved if multiple modes are used in the
analysis, and this will be a subject of further study in the future. It should be noted that there
is no proof of the selected measurement set being absolutely optimal among all
permutations of measurement points. Nevertheless, the above results demonstrated that
using the measurement points and mode determined from damage measurability analysis,
damage identi"cation results will be more accurate and reliable as compared with those
obtained by using other measurement points and mode in the analysis.

To investigate the general applicability of the method, a few other examples with di!erent
structural con"gurations were also examined. They all demonstrate that with proper
selection of measurement points and mode, more accurate and reliable results will be
derived. Nevertheless, these examples are not included in the present paper purely for
concise consideration.

5. CONCLUSIONS

A method has been developed and presented in this paper to derive a proper set of
measurement points and mode to be used in FE model updating analysis for structural
damage identi"cation. It is based on the damage measurability of a structure de"ned in
terms of damage sensitivity and noise sensitivity. Before detecting damage, damage
measurability analysis of the structural model is performed. The mode with the largest
damage measurability among all the available modes, and the points with the largest
damage measurability corresponding to that mode should be selected in measurement and
damage analysis. This selecting set has the maximum sensitivity to structural damage and
minimum sensitivity to measurement noise.

The presented algorithm is based on the FE model in undamaged state and is
independent of damage con"guration. Thus, it can be applied to any structure with any
damage state prior to "eld modal testing and damage identi"cation analysis.

The proposed procedure has been applied to identify damages in example structures.
Numerical results have demonstrated the improvement on both accuracy and reliability of
the damage identi"cation results.
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